Modeling Unsupervised Learning with SUSTAIN
نویسندگان
چکیده
SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a network model of human category learning. This paper extends SUSTAIN so that it can be used to model unsupervised learning data. A modified recruitment mechanism is introduced that creates new conceptual clusters in response to surprising events during learning. Two seemingly contradictory unsupervised learning data sets are modeled using this new recruitment method. In addition, the feasibility of using a unified recruitment method for both supervised and unsupervised learning is discussed.
منابع مشابه
Modeling Item and Category Learning
SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a network model of human category learning. SUSTAIN is a three layer model where learning between the first two layers is unsupervised, while learning between the top two layers is supervised. SUSTAIN clusters inputs in an unsupervised fashion until it groups input patterns inappropriately (as signaled by the super...
متن کاملWho says models can only do what you tell them? Unsupervised category learning data, fits, and predictions
How do people learn and organize examples in the absence of a teacher? This paper explores this question through a examination of human data and computational modeling results. The SUSTAIN (Supervised and Unsupervised STratified Incremental Network) model successfully fits human learning data drawn from two published studies. The first study examines how correlations between features can facili...
متن کاملHuman Unsupervised and Supervised Learning as a Quantitative Distinction
SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a network model of human category learning. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g. it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising eve...
متن کاملTowards a unified account of supervised and unsupervised category learning
(Supervised and Unsupervised STratified Adaptive IncrementalNetwork) is a network model of human category learning. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g. it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly...
متن کاملSUSTAIN: A Model of Human Category Learning
SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a network model of human category learning. SUSTAIN is a three layer model where learning between the first two layers is unsupervised, while learning between the top two layers is supervised. SUSTAIN clusters inputs in an unsupervised fashion until it groups input patterns inappropriately (as signaled by the super...
متن کامل